Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(16): 8730-8737, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38616350

RESUMO

An elevated level of blood uric acid (UA) can cause the formation of kidney stones, gout, and other diseases. We recently isolated a few DNA aptamers that can selectively bind to UA. In this work, we investigated the adsorption of a UA aptamer and random sequence DNA onto sodium urate crystals. Both DNA strands adsorbed similarly to urate crystals. In addition, both the UA aptamer and random DNA can inhibit the growth of urate crystals, suggesting a nonspecific adsorption mechanism rather than specific aptamer binding. In the presence of 500 nM DNA, the growth of needle-like sodium urate crystals was inhibited, and the crystals appeared granular after 6 h. To understand the mechanism of DNA adsorption, a few chemicals were added to desorb DNA. DNA bases contributed more to the adsorption than the phosphate backbone. Surfactants induced significant DNA desorption. Finally, DNA could also be adsorbed onto real UA kidney stones. This study provides essential insights into the interactions between DNA oligonucleotides and urate crystals, including the inhibition of growth and interface effects of DNA on sodium urate crystals.

2.
Adv Mater ; : e2404053, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602715

RESUMO

Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.

3.
Biomed Pharmacother ; 173: 116402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471277

RESUMO

Oleanolic acid (OA) is previously shown to exert bone protective effects in aged animals. However, its role in regulating osteoblastic vitamin D bioactivation, which is one of major causes of age-related bone loss, remains unclear. Our results revealed that treatment of OA significantly increased skeletal CYP27B1 expression and circulating 1,25(OH)2D3 in ovariectomized mice (p <0.01). Moreover, OA upregulated CYP27B1 protein expression and activity, as well as the vitamin D-responsive bone markers alkaline phosphatase (ALP) activity and osteopontin (OPN) protein expression, in human osteoblast-like MG-63 cells (p<0.05). CYP27B1 expression increased along with the osteoblastic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). CYP27B1 expression and cellular 1,25(OH)2D3 production were further potentiated by OA in cells at mature osteogenic stages. Notably, our study suggested that the osteogenic actions of OA were CYP27B1 dependent. In summary, the bone protective effects of OA were associated with the induction of CYP27B1 activity and expression in bone tissues and osteoblastic lineages. Hence, OA might be a potential approach for management of age-related bone loss.


Assuntos
Anabolizantes , Ácido Oleanólico , Osteoporose , Vitamina D/análogos & derivados , Humanos , Animais , Camundongos , Idoso , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Ácido Oleanólico/farmacologia , Vitamina D/farmacologia , Vitamina D/metabolismo , Osso e Ossos/metabolismo , Vitaminas
4.
Biomed J ; : 100685, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38081386

RESUMO

Among the various targeting ligands for drug delivery, aptamers have attracted much interest in recent years because of their smaller size compared to antibodies, ease of modification, and better batch-to-batch consistency. In addition, aptamers can be selected to target both known and even unknown cell surface biomarkers. For drug loading, liposomes are the most successful vehicle and many FDA-approved formulations are based on liposomes. In this paper, aptamer-functionalized liposomes for targeted drug delivery are reviewed. We begin with the description of related aptamers selection, followed by methods to conjugate aptamers to liposomes and the fate of such conjugates in vivo. Then a few examples of applications are reviewed. In addition to intravenous injection for systemic delivery and hoping to achieve accumulation at target sites, for certain applications, it is also possible to have aptamer/liposome conjugates applied directly at the target tissue such as intratumor injection and dropping on the surface of the eye by adhering to the cornea. While previous reviews have focused on cancer therapy, the current review mainly covers other applications in the last four years. Finally, this article discusses potential issues of aptamer targeting and some future research opportunities.

5.
Clin Exp Optom ; : 1-15, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37879342

RESUMO

Traditional Chinese Medicine has a long history in ophthalmology in China. Over 250 kinds of Traditional Chinese Medicine have been recorded in ancient books for the management of eye diseases, which may provide an alternative or supplement to current ocular therapies. However, the core holistic philosophy of Traditional Chinese Medicine that makes it attractive can also hinder its understanding from a scientific perspective - in particular, determining true cause and effect. This review focused on how Traditional Chinese Medicine could be applied to two prevalent ocular diseases, glaucoma, and cataract. The literature on preclinical and clinical studies in both English and Chinese on the use of Traditional Chinese Medicine to treat these two diseases was reviewed. The pharmacological effects, safety profile, and drug-herb interaction of selected herbal formulas were also investigated. Finally, key considerations for conducting future Traditional Chinese Medicine studies are discussed.

6.
Phytother Res ; 37(10): 4706-4721, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421324

RESUMO

Icariin, a flavonoid glycoside derived from Epimedium brevicornum Maxim, exerts bone protective effects via estrogen receptors (ERs). This study aimed to investigate the role of ER-α66, ER-α36, and GPER in bone metabolism in osteoblasts following treatment with icariin. Human osteoblastic MG-63 cells and osteoblast-specific ER-α66 knockout mice were employed. The ERs crosstalk in the estrogenic action of icariin was evaluated in ER-α66-negative human embryonic kidney HEK293 cells. Icariin, like E2, regulated ER-α36 and GPER protein expression in osteoblasts by downregulating them and upregulating ER-α66. ER-α36 and GPER suppressed the actions of icariin and E2 in bone metabolism. However, the in vivo administration of E2 (2 mg/kg/day) or icariin (300 mg/kg/day) restored bone conditions in KO osteoblasts. ER-α36 and GPER expression increased significantly and rapidly activated and translocated in KO osteoblasts after treatment with E2 or icariin. ER-α36 overexpression in KO osteoblasts further promoted the OPG/RANKL ratio induced by E2 or icariin treatment. This study showed icariin and E2 elicit rapid estrogenic responses in bone through recruiting ER-α66, ER-α36, and GPER. Notably, in osteoblasts lacking ER-α66, ER-α36, and GPER mediate the estrogenic effects of icariin and E2, while in intact osteoblasts, ER-α36 and GPER act as negative regulators of ER-α66.


Assuntos
Fitoestrógenos , Receptores de Estrogênio , Animais , Camundongos , Humanos , Fitoestrógenos/farmacologia , Receptor alfa de Estrogênio , Células HEK293 , Flavonoides/farmacologia , Osteoblastos/metabolismo
7.
J Mater Chem B ; 11(21): 4684-4694, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37161679

RESUMO

Traditional eye drops are convenient to use; however, their effectiveness is limited by their poor retention time and bioavailability in the eyes due to ocular barriers. Therefore, strategies to enhance ocular drug delivery are required. Herein, we constructed a mucin-1 aptamer-functionalized liposome and loaded it with cyclosporin A, a common ocular drug in eye drops used to treat dry eye diseases (DED). Drug encapsulation slightly reduced the liposome size without changing the surface potential of liposomes. Approximately 90% of the cholesterol-modified aptamers were inserted to the liposomes. We evaluated the cytotoxicity, anti-inflammatory effects, cell permeability regulation, and retention time of liposomes in human corneal epithelial cells under dry eye conditions. These results suggest that the aptamer-functionalized liposomes are more efficient as nanocarriers than non-functionalized liposomes and drug-free liposomes. They restore inflammation levels by 1-fold and remain in the cells for up to 24 h. An in vivo study was also performed in a rat DED model, which demonstrated the efficacy of aptamer-functionalized liposomes in restoring tear production and corneal integrity. The present study demonstrated the capability of aptamer-functionalized liposomes in the delivery of ocular drugs for the management of ocular diseases.


Assuntos
Síndromes do Olho Seco , Lipossomos , Humanos , Ratos , Animais , Lipossomos/farmacologia , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Mucinas , Mucina-1 , Córnea , Síndromes do Olho Seco/tratamento farmacológico , Soluções Oftálmicas
8.
Nutrients ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432403

RESUMO

Our previous study revealed that the bone anabolic effects of the lignan-rich fraction (SWCA) from Sambucus williamsii Hance was involved in modulating the metabolism of tryptophan in vivo and inhibiting serotonin (5-HT) synthesis in vitro. This study aimed to determine how SWCA modulates bone metabolism via serotonin in vivo. The effects of SWCA were evaluated by using 4-month-old Sprague-Dawley (SD) ovariectomized rats. The serum levels of 5-HT and kynurenine, the protein expressions of tryptophan hydroxylase 1 (TPH-1) and TPH-2, the genes and proteins related to the 5-HT signaling pathway as well as gut microbiota composition were determined. SWCA treatment alleviated bone loss and decreased serum levels of serotonin, which was negatively related to bone mineral density (BMD) in rats. It suppressed the protein expression of TPH-1 in the colon, and reversed the gene and protein expressions of FOXO1 and ATF4 in the femur in OVX rats, while it did not affect the TPH-2 protein expression in the cortex. SWCA treatment escalated the relative abundance of Antinobacteria and modulated several genera relating to BMD. These findings verified that the bone protective effects of lignans were mediated by serotonin, and provided evidence that lignans might be a good source of TPH-1 inhibitors.


Assuntos
Microbioma Gastrointestinal , Lignanas , Sambucus , Ratos , Animais , Serotonina , Lignanas/farmacologia , Ratos Sprague-Dawley
9.
Front Endocrinol (Lausanne) ; 13: 817146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282447

RESUMO

Our previous study demonstrated that the bone protective actions of herbal medicine Rhizoma Drynariae (Gusuibu, RD) were mainly mediated by flavonoid phytoestrogens via estrogen receptors, raising concerns about the safety of using RD as it may induce estrogen-like risk-benefit profile and interact with other ER ligands, such as selective estrogen receptor modulators (SERMs), when coadministered. The present study evaluated the estrogenic activities of RD and its potential interaction with tamoxifen, a SERM, in estrogen-sensitive tissues by using mature ovariectomized (OVX) rats and ER-positive cells. Similar to but weaker than tamoxifen, RD at its clinical dose dramatically ameliorated OVX-induced changes in bone and dopamine metabolism-related markers in OVX rats. However, tamoxifen, but not RD, induced uterotrophic effects. No significant alteration in mammary gland was observed in OVX rats treated with RD, which was different from the inhibitory actions of tamoxifen. The two-way ANOVA results indicated the interactions between RD and tamoxifen in the bone, brain, and uterus of OVX rats while RD did not alter their responses to tamoxifen. Our results demonstrate that RD selectively exerts estrogenic actions in a different manner from tamoxifen. Moreover, RD interacts with tamoxifen without altering its effects in OVX rats.


Assuntos
Polypodiaceae , Receptores de Estrogênio , Animais , Estrogênios/farmacologia , Estrogênios/uso terapêutico , Feminino , Ratos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Água
10.
J Ethnopharmacol ; 275: 114096, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823166

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The increasing use of "kidney"-nourishing Traditional Chinese Medicine (TCM) like Er-xian decoction (EXD) for management of menopausal symptoms and osteoporosis has aroused concerns about their safety, and whether they interact with prescription drugs as both of them act via estrogen receptors (ERs) and regulate serum estradiol. AIM OF THE STUDY: The present study aimed to evaluate whether EXD selectively exerted estrogenic activities and interacted with Selective Estrogen Receptor Modulators (SERMs). MATERIALS AND METHODS: In vivo, mature ovariectomized (OVX) rats were administrated with EXD or combined treatment of EXD and SERMs for 12 weeks. The tissue-selective effect of EXD and its interaction of SERMs were studied in four estrogen sensitive tissues, bone, brain, breast and uterus. In vitro, the interaction of extracts of EXD-treated serum and SERMs in four ER-positive cell lines. RESULTS: In OVX rats, EXD selectively alleviated estrogen deficiency-induced changes in the bone and brain without inducing any estrogenic effects in the breast or uterus. Two-way ANOVA indicated the presence of interactions between EXD and SERMs in OVX rats but EXD did not significantly alter the tissue responses to SERMs in the bone, breast or brain. Indeed, the combined use of EXD and SERMs appeared to suppress the estrogenic effect of raloxifene and tamoxifen in the uterus. Extract of EXD-treated serum directly stimulated cell proliferation or differentiation in human osteosarcoma MG-63, neuroblastoma SHSY5Y, breast cancer MCF-7, and endometrial Ishikawa cells. Two-way ANOVA revealed that EXD-treated serum interacted with SERMs at various concentrations and altered the effects of tamoxifen in MG-63 and MCF-7 cells. CONCLUSIONS: EXD exerted estrogenic effects in a tissue-selective manner and interacted with SERMs. Combined treatment of EXD and SERMs did not hamper the beneficial effects of SERMs on the bone or brain but appeared to moderate the estrogenic effect of SERMs in the uterus.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Estrogênios/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Sistema Nervoso Central/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Estradiol/farmacologia , Estradiol/uso terapêutico , Estrogênios/química , Estrogênios/uso terapêutico , Feminino , Interações Ervas-Drogas/fisiologia , Hormônios/sangue , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Medicina Tradicional Chinesa , Modelos Biológicos , Ovariectomia/efeitos adversos , Cloridrato de Raloxifeno/farmacologia , Cloridrato de Raloxifeno/uso terapêutico , Ratos Sprague-Dawley , Receptores de Estrogênio/metabolismo , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Útero/efeitos dos fármacos , Útero/metabolismo , Útero/patologia , Água
11.
Biomed Pharmacother ; 137: 111372, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761598

RESUMO

Menopausal women are susceptible to have high risk of cardiovascular diseases, type II diabetes and osteoporosis due to the metabolic disorder caused by estrogen deficiency. Accumulating evidence supports that gut microbiota is a key regulator of metabolic diseases. Our previous metabolomics study interestingly demonstrated that the anti-osteoporotic effects of lignan-rich fraction (SWCA) from Sambucus wialliamsii Hance were related to the restoration of a series of lipid and glucose metabolites. This study aims to investigate how SWCA modulates lipid and glucose metabolism and the underlying mechanism. Our results show that oral administration of SWCA (140 mg/kg and 280 mg/kg) for 10 weeks alleviated dyslipidemia, improved liver functions, prevented glucose tolerance and insulin actions, attenuated system inflammation and improved intestinal barrier in OVX rats. It also induced a high abundance of Actinobacteria, and restored microbial composition. We are the first to report the protective effects of the lignan-rich fraction from S. williamsii on dyslipidemia and insulin resistance. Our findings provide strong evidence for the application of this lignan-rich fraction to treat menopausal lipid disorder and insulin resistance-related diseases.


Assuntos
Dislipidemias/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Hipolipemiantes/farmacologia , Resistência à Insulina , Lignanas/farmacologia , Sambucus/química , Administração Oral , Animais , Citocinas/metabolismo , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Fígado/efeitos dos fármacos , Ovariectomia , Extratos Vegetais/farmacologia , Caules de Planta/química , Ratos , Ratos Sprague-Dawley
12.
Phytother Res ; 35(3): 1456-1467, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33063371

RESUMO

More and more menopausal women use Danggui Buxue Tang (DBT) for relieving their symptoms. Concerns for its safety have been raised as it contains phytoestrogen and acts via estrogen receptors (ERs). Our study aimed to determine whether DBT could selectively exert estrogenic activities and interact with tamoxifen in bone, brain, uterus, and breast by using ovariectomized (OVX) rats and ER-positive cells. In OVX rats, DBT induced a 31.4% increase in bone mineral density and restored the mRNA expression of dopamine biomarker in striatum, 3.32-fold for tyrosine hydrolase (p < .001) and 0.21-fold for dopamine transporter (p < .001), which was similar to tamoxifen; tamoxifen, but not DBT, increased uterus weight and Complement component 3 expression by more than twofold (p < .001); unlike tamoxifen, DBT induced mild proliferation in mammary gland. Two-way ANOVA indicated the interactions between them in OVX rats (p < .05) but DBT did not alter the responses to tamoxifen. DBT stimulated proliferation or differentiation and estrogen response element in MCF-7, MG-63, Ishikawa, and SHSY5Y cells and altered the effects of tamoxifen. In summary, DBT exerted estrogenic effects in tissue-selective manner, which was different from tamoxifen. DBT interacted with tamoxifen but did not significantly alter its effects in OVX rats.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Estrogênios/uso terapêutico , Menopausa/efeitos dos fármacos , Tamoxifeno/uso terapêutico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Tamoxifeno/farmacologia
13.
Phytomedicine ; 82: 153413, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33339654

RESUMO

BACKGROUND: Rapid, non-genomic estrogen receptor (ER) signaling plays an integral role in mediating the tissue selective properties of ER modulators. Icariin, a bone bioactive flavonoid, has been reported to selectively activate non-genomic ERα signaling in in vitro and in vivo studies. PURPOSE: The mechanisms underlying the estrogen-like bone protective effects of icariin are not fully understood, especially those that are related to insulin-like growth factor I (IGF-1) signaling. The bone protective effects of icariin were investigated in female mature ovariectomized (OVX) rats and the signaling of IGF-IR- ERα cross-talk was determined in osteoblastic cells. STUDY DESIGN AND METHODS: Icariin at 3 different dosages (50, 500 and 3000 ppm) were orally administrated to rats for 3 months through daily intake of phytoestrogen-free animal diets containing icariin. Bone marrow stromal cells (BMSCs) and osteoclast precursors from femurs were harvested for experiments and RNA-sequencing. The interactions between IGF-IR and non-genomic ERα signaling were examined in pre-osteoblastic MC3T3-E1 cells and mature osteoblasts differentiated from BMSCs. RESULTS: Our results show that chronic administration of icariin to OVX rats significantly protected them against bone loss at the long bone and lumbar spine without inducing any uterotrophic effects. Ex vivo studies using BMSCs and osteoclast precursors confirmed the stimulatory effects of icariin on osteoblastogenesis and its inhibitory effects on osteoclastogenesis, respectively. RNA-sequencing analysis of mRNA from BMSCs revealed that icariin at 500 ppm significantly altered IGF-1 signaling as well as PI3K-Akt pathways. Our results demonstrated for the first time the rapid induction of interactions between IGF-IR and ERα as well as IGF-IR signaling and the downstream Akt phosphorylation by icariin in MC3T3-E1 cells. The activation of ERα and Akt phosphorylation by icariin in MC3T3-E1 cells and the osteogenic effects of icariin on ALP activity in mature osteoblasts were shown to be IGF-IR-dependent. CONCLUSION: Our findings reveal that icariin activates both ERα and Akt via enhancing rapid induction of IGF-1 signaling in osteoblastic cells for osteogenesis and might be regarded as a novel pathway-selective phytoestrogen for management of postmenopausal osteoporosis.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Estrogênios/deficiência , Flavonoides/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Osteoporose Pós-Menopausa/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Estrogênios/farmacologia , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos
14.
J Endocr Soc ; 4(2): bvz025, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32051921

RESUMO

Icariin, a flavonoid phytoestrogen derived from Herba epimedii, has been reported to exert estrogenic effects in bone and activate phosphorylation of estrogen receptor (ER) α in osteoblastic cells. However, it is unclear whether icariin selectively exerts estrogenic activities in bone without inducing undesirable effects in other estrogen-sensitive tissues. The present study aimed to investigate the tissue-selective estrogenic activities of icariin in estrogen-sensitive tissues in vivo and in vitro. Long-term treatment with icariin effectively prevented bone of ovariectomized (OVX) rats from estrogen deficiency-induced osteoporotic changes in bone structure, bone mineral density, and trabecular properties. Moreover, icariin regulated the transcriptional events of estrogen-responsive genes related to bone remodeling and prevented dopaminergic neurons against OVX-induced changes by rescuing expression of estrogen-regulated tyrosine hydroxylase and dopamine transporter in the striatum. Unlike estrogen, icariin did not induce estrogenic effects in the uterus and breast in mature OVX rats or immature CD-1 mice. In vitro studies demonstrated that icariin exerted estrogen-like activities and regulated the expression of estrogen-responsive genes but did not induce estrogen response element-dependent luciferase activities in ER-positive cells. Our results support the hypothesis that icariin, through its distinct mechanism of actions in activating ER, selectively exerts estrogenic activities in different tissues and cell types.

15.
Front Pharmacol ; 11: 571598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519435

RESUMO

Herba epimedii (HEP), a kidney-tonifying herb, has been commonly used alone or in formula for strengthening kidney function and treating bone disorders. Its bone protective activity has been demonstrated to be via estrogen receptor (ERs). HEP activates the phosphorylation of ERα in an estrogen response element- (ERE-) dependent manner. We examined the bone protective effects of HEP and its potential interactions with Selective Estrogen Receptor Modulators (SERMs, such as tamoxifen and raloxifene) as they act via the same ERs. Six-month-old mature Sprague Dawley sham-operated (Sham) or ovariectomized (OVX) rats were treated with either vehicle, 17ß-estradiol (1.0 mg/kg.day), tamoxifen (Tamo, 1.0 mg/kg.day), raloxifene (Ralo, 3.0 mg/kg.day), HEP (0.16 g/kg.day), or its combinations with respective SERMs (HEP + Tamo; HEP + Ralo) for 12 weeks. HEP and SERMs as well as their combinations significantly restored changes in bone mineral density (BMD), trabecular bone properties, and bone turnover biomarkers induced by ovarian sex hormone deficiency in ovariectomized rats. Besides the increase in serum estradiol, inhibition on follicle stimulating hormone (FSH) might also be involved in the osteoprotective activities of HEP and SERMs. HEP interacted with SERMs to protect bones from ovarian sex hormone deficiency without altering SERMs' bone protective activities. HEP neither induced changes in uterus weight nor altered the uterotrophic activity of SERMs in OVX rats. In human osteosarcoma MG-63 cells, HEP-treated serum (HEP-Ts) significantly promoted alkaline phosphatase (ALP) activity like the crude HEP extract did but did not stimulate ERE activity. Our study also reported that biologically activated HEP interacted with SERMs to promote ALP activity without altering the action of SERMs at most of the concentrations tested in MG-63 cells. HEP exerted bone protective activity and the use of HEP did not alter the bone protective activities of SERMs when they were used simultaneously in an estrogen-deficient rat model.

16.
Front Pharmacol ; 9: 779, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150931

RESUMO

Danggui Buxue Tang (DBT), a traditional Chinese Medicine decoction containing Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), is commonly prescribed for women in China as a remedy for menopausal symptoms. Previous study indicated that DBT stimulated cell growth and differentiation of human osteosarcoma MG-63 cells and exhibited estrogenic properties via estrogen receptors (ERs). The present study aimed to study the bone protective effects of DBT and its potential interactions with selective estrogen receptor modulators (SERMs, tamoxifen and raloxifene) in both in vivo and in vitro models as they act via similar ERs. Six-month-old Sprague-Dawley rats were randomly assigned to the following treatments for 12 weeks: (1) sham-operated control group with vehicle (sham), (2) ovariectomized group with vehicle (OVX), (3) OVX with 17ß-estradiol (E2, 2.0 mg/kg day), (4) OVX with tamoxifen (Tamo, 1.0 mg/kg day), (5) OVX with raloxifene (Ralo, 3.0 mg/kg day), (6) OVX with DBT (DBT, 3.0 g/kg day), (7) OVX with DBT+Tamoxifen (DBT+Tamo), and (8) OVX with DBT+Raloxifene (DBT+Ralo). Effects of DBT and potential interactions between DBT and SERMs were also evaluated in MG-63 cells. DBT, tamoxifen, raloxifene, and their combinations significantly increased bone mineral density (BMD) and improved trabecular bone properties, including bone surface (BS), trabecular bone number (Tb.N), and trabecular bone separation (Tb.Sp), as well as restored changes in bone turnover biomarkers and mRNA expression of genes involved in bone metabolism in OVX rats. Furthermore, DBT, SERMs, and their combinations significantly increased serum estradiol and suppressed follicle stimulating hormone and luteinizing hormone in OVX rats, suggesting the possible involvement of the hypothalamus-pituitary-gonadal axis in mediating their bone protective effects. However, SERMs, but not DBT, significantly increased uterus index in OVX rats. DBT significantly induced ALP activity and estrogen response element-dependent transcription in MG-63 cells. Our study demonstrated that DBT alone and in combinations with SERMs could exert bone protective effects in vitro and in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...